Beranda > Ilmu Pengetahuan > [FISIKA] Bahasan Bio-Optik

[FISIKA] Bahasan Bio-Optik


Pengertian Biooptik

Menilik kata biooptik, tersusun atas kata bio dan optik. Bio berkaitan dengan makhluk hidup/ zat hidup atau bagian tertentu dari makhluk hidup, sedangkan optik dikenal sebagai bagian ilmu fisika yang berkaitan dengan cahaya atau berkas sinar. secara spesifik ada klasifikasi Optik geometri dan optika fisis. Fokus utama di biooptik adalah terkait dengan indera penglihatan manusia, yaitu mata.

Mata menjadi alat optik yang paling penting pada manusia atau makhluk hidup. Bagaimana proses sebuah objek dapat dilihat dan dipersepsikan di otak? Apa saja bagian-bagian mata yang berperan? Mengapa seseorang bisa rabun, atau Mengapa respon mata terhadap perubahan intensitas cahaya di gelap atau terang berbeda? Apa itu rod dan kone? Apa saja jenis kelainan mata dan bagaimana cara mengoreksi atau memperbaikinya?

 

Optika Geometri dan Optika Fisik

  1. Optika Geometri

Berpangkal pada perjalanan cahaya dalam medium secara garis lurus, berkas-berkas cahaya di sebut garis cahaya dan gambar secara garis lurus. Dengan cara pendekatan ini dapatlah melukiskan ciri-ciri cermin dan lensa dalam bentuk matematika. Misalnya untuk rumus cermin dan lensa :

f = focus = titik api

b = jarak benda

v = jarak bayangan

Hukum Willebrord Snelius (1581 -1626) :

n = indeks bias

i = sudut datang

r = sudut bias (refraksi)

  1. Optika Fisik

Gejala cahaya seperti dispersi, interferensi dan polasisasi tidak dapat di jelaskan malui metode optika geometri. Gejala-gejala ini hanya dapat dijelaskan dengan menghitung ciri-ciri fisik dari cahaya tersebut. Sir Isaac Newton (1642-1727), cahaya itu menggambarkan peristiwa cahaya sebagai sebuah aliran dari butir-butir kecil (teori korpuskuler). Sedangkan dengan menggunakan teori kwantum yang dipelopori Plank (1858-1947), cahaya itu terdiri atas kwanta atau foton-foton, tampaknya agak mirip dengan teori Newton yang lama itu. Dengan menggunakan teori Max Plank dapat menjelaskan mengapa benda itu panas apabila terkena sinar.

Thomas Young (1773-1829) dan August Fresnel (1788-1827), dapat menjelaskan bahwa cahaya dapat melentur berinterferensi. James Clark Mexwell (1831-1879) berkebangsaan Skotlandia, dari hasil percobaannya dapat menjelaskan bahwa cepat rambat cahaya (3 X 10 m/detik) sehingga berkesimpulan bahwa cahaya adalah gelombang elektromagnetik.

Huygens ( 1690) menganggap cahaya itu sebagai gejala gelombang dari sebuah sumber cahaya menjalarkan getaran-getaran ke semua jurusan. Setiap titik dari ruangan yang bergetar olehnya dapat dianggap sebagai sebuah pusat gelombang baru. Inilah prinsip dari Huygens yang belum bisa menjelaskan perjalanan cahaya dari satu medium ke medium lainnya. Dari hasil percobaan Einstein (1879-1955) dimana logam di sinari dengan cahaya akan memancarkan electron (gejala foto listrik). Hal ini dapat disimpulkan bahwa cahaya memiliki sifat fartikel dan gelombang magnetic.

Dari uraian di atas dapat disimpulkan bahwa cahaya mempunyai sifat materi (partikel) dan sifat gelombang.

Macam-macam Bentuk Lensa

                        Berdasarkan bentuk permukaannya, lensa dibagi menjadi dua, yaitu:

  1. Lensa yang mempunyai permukaan sferis, dibagi menjadi dua macam pula, yaitu:

  1. Lensa Cembung/ Konvergen/ Positif

Sebuah lensa positif atau lensa pengumpul adalah lensa yang bagian tengahnya lebih tebal dari bagian tepinya. Cahaya sejajar yang datang pada sebuah lensa positif difokuskan pada titik focus kedua yang berada pada sisi transmisi lensa tersebut.

  •  Lensa Cekung/ Divergen/ Negatif

Sebuah lensa negative atau lensa menyebar adalah lensa yang bagian tepinya lebih tebal daripada bagian tengahnya. Cahaya sejajar yang datang pada sebuah lensa negative memancar seolah-olah dari titik focus kedua, yang berada pada sisi datang lensa.

  • Lensa yang mempunyai permukaan silindris

Adalah lensa yang mempunyai silinder, lensa ini mempunyai fokus yang positif dan ada pula yang mempunyai panjang fokus negatif.

           

 Kekuatan Lensa (Dioptri)

 Kekuatan lensa dinyatakan dengan satuan dioptri (m-1). Kekuatan lensa (P) sama dengan kebalikan panjang fokusnya (1/f). Jika panjang fokus dalam meter, kekuatan lensa adalah dalam dioptri (D):

                        P =  =  +  dioptri

P = Kekuatan lensa (dioptri)

F = fokus lensa (m)

s = jarak benda dari lensa (m)

s´ = jarak bayangan dari lensa (m)

1D = 1 m-1

 

Kesesatan Lensa

Berdasarkan persamaan yang berkaitan dengan jarak benda, jarak bayangan , jarak focus, radius kelengkungan lensa seerta sinar-sinar yang dating paraksial akan kemungkinan adanya kesesatan lensa (aberasi lensa). Aberasi ini ada bermacam-macam :

  1. Aberasi sferis ( disebabkan oleh kecembungan lensa).Sinar-sinar paraksial / sinar-sinar dari pinggir lensa membentuk bayangan di P’. aberasi ini dapat dihilangkan dengan mempergunakan diafragma yang diletakkan di depan lensa atau dengan lensa gabungan aplanatis yang terdiri dari dua lensa yang jenis kacanya berlainan.
  2. Koma,  Aberasi ini terjadi akibat tidak sanggupnya lensa membentuk bayangan dari sinar di tengah-tengah dan sinar tepi. Berbeda dengan aberasi sferis pada aberasi koma sebuah titik benda akan terbentuk bayangan seperti bintang berekor, gejala koma ini tidak dapat diperbaiki dengan diafragma.
  3. Astigmatisma, Merupakan suatu sesatan lensa yang disebabkan oleh titik benda membentuk sudut besar dengan sumbu sehingga bayangan yang terbentuk ada dua yaitu primer dan sekunder. Apabila sudut antara sumbu dengan titik benda relatif kecil maka kemungkinan besar akan berbentuk koma.
  4. Kelengkungan medan,  Bayangan yang dibentuk oleh lensa pada layer letaknya tidak dalam satu bidang datar melainkan pada bidang lengkung. Peristiwa ini disebut lengkungan medan atau lengkungan bidang bayangan.
  5. Distorsi,  Distorsi atau gejala terbentuknya bayangan palsu. Terjadinya bayangan palsu ini oleh karena di depan atau di belakang lensa diletakkan diafragma atau cela. Benda berbentuk kisi akan tampak bayangan berbentuk tong atau berbentuk bantal. Gejala distorsi ini dapat dihilangkan dengan memasang sebuah cela di antara dua buah lensa.
  6. Aberasi kromatis, Prinsip dasar terjadinya aberasi kromatis oleh karena focus lensa berbeda-beda untuk tiap-tiap warna. Akibatnya bayangan yang terbentuk akan tampak berbagai jarak dari lensa.

 Aberasi

Pemburaman bayangan dari sebuah obyek tunggal dikenal dengan istilah aberasi. Aberasi sferis merupakan hasil dari kenyataan bahwa permukaan melengkung hanya memfokuskan sinar-sinar paraksial (sinar-sinar yang berjalan dekat sumbu utama) pada sebuah titik tunggal. Sinar-sinar non paraksial pada titik dekat yang bergantung pada sudut yang dibuat dengan sumbu utamanya. Sinar-sinar yang mengenai lensa jauh dari sumbu utamadibelokkan lebihh dari sinar-sinar yang dekat dengan sumbu utama, dengan hasilnya bahwa tidak semua sinar difokuskan pada sebuah titik tunggal. Sebaliknya bayangan tersebut kelihatan sebagai sebuah cakram melingkar. Lingkaran dengan kekacauan paling sedikit berada pada titik, di mana garis tengahnya minimum.

 Aberasi sferis dapat dikurangi dengan memperkecil ukuran permukaan melengkungnya, yang juga berarti memperkecil jumlah cahaya yang mencapai bayangannya. Aberasi seperti ini namun lebih rumit disebut coma (comet-shapet image) dan  astigmatisma yang terjadi saat obyek-obyek berada di luar sumbu utama. Aberasi dalam bentuk bayagan obyek yang memanjang yang disebabkan kenyataan bahwa perbesaran bergantung pada jarak titik obyek dari sumbu utama disebut distorsi.

Aberasi kromatik, yang terjadi pada lensa bukan pada cermin, adalah hasil dari variasi indeks bias dengan panjang gelombang.

Aberasi kromatik dan aberasi lainnya dapat diperbaiki sebagian dengan menggunakan kombinasi beberapa lensa sebagai ganti sebuah lensa tunggal. Sebagai contoh, sebuah lensa positif dan sebuah lensa negative dengan panjang fokus lebih besar dapat digunakan bersama-sama untuk menghasilkan sebuah sistem lensa pengumpul yang mempunyai aberasi kromatik jauh lebih sedikit dibandingkan sebuah lensa tunggal dengan panjang fokus yang sama. Lensa-lensa kamera yang bagus biasanya berisi elemen-elemen untuk memperbaiki berbagai aberasi yang muncul.

 Instrumen Optik

Banyak instrumen yang digunakan saat ini sangat canggih. Prinsip kerjanya sering sangat sederhana, tetapi penggunaan imajinatif prinsip-prinsip ini telah melipatgandakan kemampuan kita untuk melihat dan memahami dunia yang melingkupi kita.

Mata

Mata merupakan alat optik yang paling dekat dengan kita dan merupakan sistem optik yang paling penting. Dengan mata, kita bisa melihat keindahan alam sekitar kita.

Bagian-bagian Mata

Mata memiliki bagian-bagian yang memiliki fungsi-fungsi tertentu sebagai alat optik, yaitu:

a)      Kornea, merupakan selaput kuat yang tembus cahaya dan berfungsi sebagai pelindung bagian dalam bola mata. Kornea memiliki inervasi saraf tetapi avaskuler (tidak memiliki suplai darah).

b)      Iris, merupakan selaput berbentuk lingkaran yang menyebabkan mata dapat membedakan warna.  Iris adalah diafragma yang melingkar dan berpigmen dengan lubang yang agak di tengah yakni pupil. Iris terletak sebagian dibagian depan lensa dan sebagian di depan badan siliaris. Iris terdiri dari serat otot polos. Fungsi iris yakni mengendalikan jumlah cahaya yang masuk.

c)      Pupil, merupakan celah lingkaran pada mata yang dibentuk oleh iris, berfungsi mengatur banyaknya cahaya yang masuk ke mata.

d)     Lensa mata, merupakan lensa cembung yang terbuat dari bahan bening, berserat dan kenyal, berfungsi mengatur pembiasan cahaya.

e)      Retina, merupakan lapisan yang berisi ujung-ujung saraf yang sangat peka terhadap cahaya. Retina berfungsi untuk menangkap bayangan yang dibentuk oleh lensa mata. Retina merupakan bagian saraf  pada mata, tersusun oleh sel saraf dan serat-seratnya. Retina berperan sebagai reseptor rangsang cahaya. Retina tersusun dari sel kerucut yang bertanggung jawab untuk penglihatan warna dan sel batang yang bertanggung jawab untuk penglihatan di tempat gelap.

f)       Aquaeuos humor, merupakan cairan mata.

g)      Saraf optic, merupakan saraf yang menyampaikan informasi tentang kuat cahaya dan warna ke otak.

Banyak pengetahuan yang kita peroleh melalui suatu penglihatan. Untuk membedakan gelap atau terang tergantung atas penglihatan seseorang.Ada tiga komponen pada penginderaan penglihatan :

*        Mata memfokuskan bayangan pada retina,

*        System syaraf mata yang memberi informasi ke otak,

*        Korteks penglihatan salah satu bagian yang menganalisa penglihatan tersebut.

b.         Pembentukan Bayangan Pada Mata

Mata bisa melihat benda jika cahaya yang dipantulkan benda sampai pada mata dengan cukup, kemudian lensa mata akan membentuk bayangan yang bersifat nyata, terbalik dan diperkecil pada retina. Ada tiga komponen penginderaan penglihatan, yaitu:

  1. Mata memfokuskan bayangan pada retina
  2. Sistem saraf mata yang member informasi ke otak
  3. Korteks penglihatan salah satu bagian yang menganalisa penglihatan tersebut

Cahaya memasuki mata melalui bukaan yang berubah, lapisan serat saraf yang menutupi permukaan belakangnya. Retina berisi struktur indra-cahaya yang sangat luas yang disebut batang (rod) dan kerucut (cone) yang menerima dan memancarkan informasi di sepanjang serat saraf optic ke otak. Bentuk lensa kristal dapat diubah sedikit oleh kerja otot siliari. Apabila mata difokuskan pada benda yang jauh, otot akan mengendur dan sistem lensa kornea berada pada panjang fokus maksimumnya, kira-kira 2 cm, jarak dari kornea ke retina. Apabila benda didekatkan, otot siliari akan meningkatkan kelengkungan lensa, yang dengan demikian akan mengurangi panjang fokusnya sehingga bayangan akan difokuskan ke retina. Proses ini disebut akomodasi.

c.         Ketajaman Penglihatan

Ketajaman penglihatan digunakan untuk menentukan penggunaan kacamata, di klinik dikenal dengan istilah visus. Sedangkan dalam fisika, ketajaman penglihatan ini disebut resolusi mata.

Visus penderita bukan saja member pengertian tentang optiknya (kacamata), tetapi mempunyai arti yang lebih luas yaitu memberi keterangan mengenai baik buruknya fungsi mata secara keseluruhan. Oleh karena itu definisi visus adalah: nilai kebalikan sudut (dalam menit) terkecil di mana sebuah benda masih dapat dilihat dan dapat dibedakan.

Pada penentuan visus, para ahli mata mempergunakan kartu Snellen, dengan berbagai ukuran huruf dan jarak yang sudah ditentukan. Misalnya mata normal pada waktu diperiksa diperoleh 20/40, berarti penderita dapat membaca huruf pada 20 ft, sedangkan bagi mata normal dapat membaca pada jarak 40 ft, (1 ft = 5 m). Dengan demikian dapat dirumuskan dengan persamaan:

V =

d :  jarak yang dapat dilihat oleh penderita

D : jarak yang dapat dilihat oleh mata normal

             Penggunaan kartu Snellen ini kualitasnya kadang-kadang meragukan oleh karena huruf yang sama besarnya mempunyai derajat kesukaran yang berbeda, demikian pula huruf dengan ukuran berbeda kadang-kadang tidak sama bentuknya. Untuk menghindari kelemahan-kelemahan itu telah diciptakan kartu Cincin Landolt. Kartu ini mempunyai sejumlah cincin berlubang, diatur berderet yang sama besar, dengan lubang yang arahnya ke atas, ke bawah, ke kiri dan ke kanan. Dari atas ke bawah cincin itu diatur agar lubangnya mengecil secara berangsur-angsur. Penderita disuruh menunjukan deretan cincin tersebut hingga cincin terkecil tanpa salah. Angka visus ini dapat didapat dengan menghitung sudut di mana cincin Landolt itu diamati. Misalnya penderita menunjukan cincin Landolt tanpa salah 0,8 mm jarak 4 meter.

d.         Medan Penglihatan

Untuk mengetahui besar kecilnya medan penglihatan seseorang dipergunakan alat Perimeter. Dengan alat ini diperoleh medan penglihatan vertikal 130º, sedangkan medan penglihatan horizontal 155º.

e.         Tanggap Cahaya

            Bagian mata yang tanggap cahaya adalah retina. Ada dua tipe fotoreseptor pada retina yaitu Rod (batang) dan Cone (kerucut). Rod dan Cone tidak terletak pada permukaan retina melainkan beberapa lapis di belakang jaringan saraf. Tiap mata memiliki 6,5 juta cone yang berfungsi untuk melihat siang hari, disebut penglihatan fotopik. Melalui cone kita dapat mengenal beberapa warna, tetapi hanya sensitive terhadap warna kuning, hijau (panjang gelombang 550 nm). Cone terdapat terutama pada fovea sentralis.

            Rod dipergunakan pada waktu malam atau disebut penglihatan skotopik, dan merupakan ketajaman penglihatan dan dipergunakan untuk melihat ke samping. Setiap mata terdapat 120 juta rod. Distribusi pada retina tidak merata, pada sudut 20º terdapat kepadatan yang maksimal. Batang ini sangat peka terhadap cahaya biru dan hijau (510 nm).

            Tetapi rod dan cone sama-sama peka terhadap cahaya merah (650-700 nm), tetapi penglihatan cone lebih baik terhadap cahaya merah jika dibandingkan dengan rod.

            f.          Penyesuaian Terhadap Terang dan Gelap

Dari ruang gelap masuk ke ruangan terang kurang mengalami kesulitan dalam penglihatan. Tetapi apabila dari ruangan terang masuk ke dalam ruangan gelap akan tampak kesulitan dalam penglihatan dan diperlukan waktu agar memperoleh penyesuaian.

Apabila kepekaan retina cukup besar, seluruh objek/benda akan merangsang rod secara maksimum sehingga setiap benda bahkan yang gelap pun akan terlihat terang putih. Tetapi apabila kepekaan retina sangat lemah, ketika masuk ke dalam ruangan gelap tidak ada bayangan yang benderang yang merangsang rod dengan akibat tidak ada suatu objek pun yang terlihat. Perubahan sensitivitas retina secara automatis ini dikenal sebagai fenomena penyesuaian terang dan gelap.

a)      Mekanisme Penyesuaian Terang (Cahaya)

Pada kerucut dan batang terjadi perubahan di bawah pengaruh energy sinar yang disebut foto kimia. Di bawah pengaruh foto kimia ini rhodopsin akan pecah, masuk ke dalam retina dan skotopsine. Retina akan tereduksi menjadi vitamin A di bawah pengaruh enzim alcohol dehydrogenase dan koenzym DPN-H + H+ (=DNA) dan terjadi proses timbale balik (visa verasa).

Rushton (1955) telah membuktikan adanya rhodopsin dalam retina mata manusia, ternyata konsentrasi rhodopsin sesuai dengan distribusi rod. Penyinaran dengan energi cahaya yang besar dan dilakukan secara terus menerus, konsentrasi rhodopsin di dalam rod akan sangat menurun sehingga kepekaan retina terhadap cahaya akan menurun.

b)     Mekanisme Penyesuaian Gelap

Seseorang masuk ke dalam ruangan gelap yang tadinya berada di ruangan terang, jumlah rhodopsin di dalam rod sangat sedikit sebagai akibat orang tersebut tidak dapat melihat objek/benda di ruang gelap. Selama berada di ruangan gelap, pembentukan rhodopsin di dalam rod sangatlah perlahan-lahan, konsentrasi rhodopsin akan mencapai kadar yang cukup dalam beberapa menit berikutnya sehingga akhirnya rod akan terangsang oleh cahaya dalam waktu singkat.

Selama penyesuaian gelap, kepekaan retina akan meningkat mencapai nilai 1.000 hanya dalam waktu beberapa menit saja.kepekaan retina mencapai 1.000, waktu yang diperlukan 1 jam. Sedangkan kepekaan retina akan menurun dari nilai 100.000 apabila seseorang dari ruangan gelap ke ruangan terang. Proses penurunan kepekaan retina hanya diperlukan waktu 1 sampai 10 menit. Penyesuaian gelap ini ternyata cone lebih cepat daripada rod. Dalam waktu kira-kira 5 menit fovea sentralis telah mencapai tingkat kepekaan. Kemudian dilanjutkan penyesuaian gelap oleh rod sekitar 30 sampai 60 menit, rata-rata terjadi pada 15 menit pertama.

g.        Tanggap Warna

Salah satu kemampuan mata adalah tanggap warna, namun mekanisme tanggap warna tersebut belum diketahui secara jelas. Tetapi dengan menggunakan pengamatan fotopik dapat melihat warna namun tidak dapat membedakan warna pada objek yang letaknya jauh dari pusat medan penglihatan.

a)      Teori Tanggap Warna

Cone berbeda dengan rod dalam beberapa hal, yaitu cone member jawaban yang selektif terhadap warna, kurang sensitif terhadap cahaya dan mempunyai hubungan dengan otak dalam kaitan ketajaman penglihatan dibandingkan dengan rod. Ahli faal Lamonov, Young Helmholtz berpendapat ada tiga tipe cone yang tanggap terhadap tiga warna pokok yaitu biru, hijau dan merah.

1)      Cone biru, mempunyai kemampuan tanggap gelombang frekuensi cahaya antara 400-500 millimikron. Berarti cone biru dapat menerima cahaya ungu, biru dan hijau.

2)      Cone hijau, berkemampuan menerima gelombang cahaya dengan frekuensi antara 450 dan 675 millimikron. Ini berarti cone hijau dapat mendeteksi warna biru, hijau, kuning, orange dan merah.

3)      Cone merah, dapat mendeteksi seluruh panjang gelombang cahaya tetapi respon terhadap cahaya orange kemerahan sangat kuat daripada warna-warna lainnya.

 Ketiga warna pokok (biru, hijau dan merah) disebut trikhromatik.

 b)     Buta Warna

Jika seseorang tidak mempunyai cone merah, ia masih dapat melihat warna hijau, kuning orange dan warna merah dengan menggunakan cone hijau, tetapi tidak dapat membedakan secara tepat antara masing-masing warna tersebut oleh karena tidak mempunyai cone merah untuk kontras/membandingkan dengan cone hijau. Demikian pula jika seseorang kekurangan cone hijau, ia masih dapat melihat seluruh warna, tetapi tidak dapat membedakan antara warna hijau, kuning, oranye dan merah. Hal ini disebabkan cone hijau yang sedikit tidak mampu mengkontraskan dengan cone merah. Jadi tidak adanya cone merah atau hijau akan timbul kesukaran atau ketidakmampuan untuk membedakan warna antara warna merah dan hijau, keadaan ini disebut buta warna merah-hijau. Kasus yang jarang sekali, tetapi bisa jadi seseorang kekurangan cone biru, maka orang tersebut sukar membedakan warna ungu, biru dan hijau. Tipe buta warna ini disebut kelemahan biru (blue weakness).

Pada suatu penelitian diperoleh 8% laki-laki buta warna, sedangkan 0,5% terdapat pada wanita dan dikatakan buta warna ini diturunkan oleh wanita. Ada pula orang buta terhadap warna merah disebut protanopia, buta terhadap warna hijau disebut deuteranopia dan buta warna terhadap warna biru disebut tritanopia.

h.         Daya Akomodasi

Dalam hal memfokuskan objek pada retina, lensa mata memegang peranan penting. Kornea mempunyai fungsi memfokuskan objek secara tepat, demikian pula bola mata yang berdiameter 20-23 mm. Kemampuan lensa mata untuk memfokuskan objek disebut daya akomodasi. Selama mata melihat jauh, tidak terjadi akomodasi. Makin dekat benda yang dilihat, semakin kuat mata/lensa berakomodasi. Daya akomodasi ini tergantung kepada umur. Usia semakin tua daya akomodasi semakin menurun, hal ini disebabkan kekenyalan/elastisitas lensa semakin berkurang.

Jika benda terlalu dekat ke mata, lensa mata tidak dapat memfokuskan cahaya pada retina dan bayangannya menjadi kabur. Titik terdekat di mana lensa mata memfokuskan suatu bayangan pada retina disebut titik dekat (punctum proksimum). Pada saat ini mata berakomodasi sekuat-kuatnya (berakomodasi maksimum). Jarak dari mata ke titik dekat ini sangat beragam pada tiap orang dan berubah dengan meningkatnya usia. Pada usia 10 tahun, titik dekat dapat sedekat 7 cm, sementara pada usia 60 tahun titik dekat ini telah menjauh ke 200 cm karena kehilangan keluwesan lensa akibat elastisitas lensa semakin berkurang, disebut mata presbyop atau mata tua dan bukan merupakan cacat mata. Nilai standar yang diambil untuk titik dekat ini adalah 25 cm, dan dianggap sebagai mata normal.

Jarak terjauh benda agar dapat dilihat dengan jelas, dikatakan benda terletak pada titik jauh (punctum remotum). Pada saat ini mata tidak berakomodasi.lepas akomodasi.

i.    Jenis-jenis Mata dan Teknik Koreksi

a)      Mata Normal

Sering disebut juga mata emetrop. Mata normal memiliki titik dekat 25 cm dan titik jauh tak terhingga. Apabila mata memiliki titik dekat tidak sama dnegan 25 cm dan titik jauh tidak sama dengan tak terhingga, maka dikatakan sebagai cacat mata. Hal ini mengakibatkan mata sulit melihat benda yang jauh maupun dekat karena bayangan tidak jatuh tepat pada retina.

 b)     Rabun Jauh (Miopi)

Disebut juga mata terang dekat, memiliki titik dekat kurang dari 25 cm (< 25 cm) dan titik jauh pada jarak tertentu. Orang yang menderita miopi dapat melihat dengan jelas benda pada jarak 25 cm, tetapi tidak dapat melihat benda jauh dengan jelas. Hal ini terjadi karena lensa mata tidak dapat menjadi piph sebagaimana mestinya sehingga bayangan benda jatuh di depan retina, disebabkan karena mata dibiasakan melihat benda dengan jarak dekat atau kurang dari 25 cm. cacat mata ini dapat diatasi dengan memakai kacamata berlensa cekung (minus).

c)      Rabun Dekat (Hipermetropi)

Rabun dekat memiliki titik dekat lebih dari 25 cm (> 25 cm), dan titik jauhnya pada jarak tak terhingga. Penderita rabun dekat dapat melihat jelas benda-benda yang sangat jauh tetapi tidak dapat melihat benda-benda dekat dnegan jelas. Hal ini terjadi karena lensa mata tidak dapat menjadi cembung sebagaimana mestinya sehingga bayangan benda jatuh di belakang retina, disebabkan karena mata dibiasakan melihat benda yang jaraknya jauh. Cacat mata ini dapat diatasi dengan kacamata berlensa cembung (plus).

d)     Mata Tua (Presbiopi)

Jenis mata ini bukan termasuk cacat mata, disebabkan oleh daya akomodasi yang berkurang akibat bertambah usia. Letak titik dekat maupun titik jauh telah bergeser. Titik dekatnya lebih dari 25 cm dan titik jauhnya hanya pada jarak tertentu. Pada penderita presbiopi tidak dapat melihat benda jauh dengan jelas serta tidak dapat membaca pada jarak baca normal. Jenis mata ini dapat ditolong dengan kacamata berlensa rangkap (minus di atas dan plus di bawah) yang disebut kacamata bifocal.

 e)      Astigmatisma

Cacat mata ini disebabkan oleh kornea mata yang tidak berbentuk sferis, tapi lebih melengkung pada satu sisi daripada sisi yang lain. Akibatnya sebuah titik akan difokuskan sebagai garis pendek. Penderita astagmatisma, dengan satu mata akan melihat garis dalam satu arah lebih jelas daripada kea rah yang berlawanan. Penderita astagmatisma dapat diatasi dnegan menggunakan kacamata berlensa silindris.

 f)       Mata Campuran

Penderita yang matanya sekaligus mengalami prsesbiopi dan miopi, maka memiliki titik dekat yang letaknya terlalu jauh dan titik jauh terlalu kecil, dapat ditolong dengan kacamata berlensa rangkap atau bifocal (negatif di atas dan positif di bawah).

            j.          Peralatan Dalam Pemeriksaan Mata

Dari sekian banyak peralatan mata, hanya beberapa peralatan yang akan dibahas dalam kaitan pemeriksaan mata. Ada tiga prinsip dalam pemeriksaan mata yaitu : pemeriksaaan mata bagian dalam, pengukuran daya focus mata, pengukuran kelengkungan kornea. Peralatan dalam pemeriksaan mata dan lensa ada 6 macam yaitu :

  1. Opthalmoskop
  2. Retinoskop
  3. Keratometer
  4. Tonometer dari schiotz
  5. Pupilometer
  6.  Lensometer

 

1)      Opthalmoskop

Alat ini mula-mula dipakai oleh Helmholtz (1851). Prinsip pemeriksaan dengan opthalmoskop untuk mengetahui keadaan fundus okuli ( = retina mata dan pembuluh darah khoroidea keseluruhannya). Ada dua prinsip kerja opthalmoskop yaitu :

  1. Pencerminan mata secara langsung

Fundus okuli penderita disinari dengan lampu, apabila mata penderita emetropia dan tidak melakukan akomodasi maka sebagian cahaya akan dipantulkan dan keluar dari lensa mata penderita dalam keadaan sejajar dan terkumpul menjadi gambar tajam pada selaput jaringan mata pemeriksa (dokter) yang juga tidak terakomodasi. Pada jaringan mata dokter terbentuk gambar terbalik dan sama besar dengan fundus penderita.

  1. Pencerminan mata secara tak langsung

Cahaya melalui lensa condenser diproyeksi ke dalam mata penderita dengan bantuan cermin datar kemudian melalui retina mata penderita dipantulkan keluar dan difokuskan pada mata sipemeriksa (dokter). Dengan mempergunakan opthalmoskop dapat mengamati permasalahan mata yang berkaitan dengan tumor otak.

2)      Retinoskop

Alat ini dipakai untuk menentukan reset lensa demi koreksi mata penderita tanpa aktivitas penderita, meskipun demikian mata penderita perlu terbuka dan dalam posisi nyaman bagi si pemeriksa. Cahaya lampu diproyeksi ke dalam mata penderita dimana mata penderita tanpa akomodasi. Cahaya tersebut kemudian dipantulkan dari retina dan berfungsi sebagai sumber cahaya bagi sipemeriksa.

Fungsi retinoskop dianggap normal, apabila suatu objek (cahaya) berada di titik jauh mata akan difokuskan pada retina. Cahaya yang dipantulkan retina akan menghasilkan bayanagan focus pada titik jauh pula. Oleh karena itu pada waktu pemeriksa mengamati mata penderita melalui retionoskop ,lensa posistif atau negatif diletakkan di depan mata penderita sesuai dengan keperluan agar bayangan (cahaya) yang dibentuk oleg retina penderita difokuskan pada mata pemeriksa. Lensa posistif atau negatif yang dipakai itu perlu ditambah atau dikurangi agar pengfokusan bayangan dari retina penderita terhadap pemeriksa tepat adanya. Suatu contoh, jarak pemeriksa 67 cm lensa yang diperlukan 1, 5 D.

 3)      Keratometer

Alat ini untuk mengukur kelengkungan kornea. Pengukuran ini diperuntukkan pemakaian lensa kontak; lensa kontak ini dipakai langsung yaitu dengan cara menempel pada kornea yang mengalami gangguan kelengkungan. Ada dua lensa kontak yaitu :

  1. Hard contact lens. Dibuat dari plastic yang keras, tebal 1 mm dengan diameter 1 cm. sangat efektif bila dilepaskan dan mudah terlepas oleh air mata tetapi dapat mengoreksi astigmatisma.
  2. Soft contact lens adalah kebalikan dari hard contact lens. Sangat nyaman tetapi tidak dapat mengoreksi astigmatisma.

Dasar kerja keratometer :

Benda dengan ukuran tertentu diletakkan didepan cermin cembung dengan jarak diketahui akan membentuk bayangan di belakang cermin cembung berjarak ½ r. dengan demikian dapat ditentukan permukaan cermin cembung.
Berlandaskan kerja cermin cembung maka dibuat keratometer. Pada keratometer ,kornea bertindak sebagai cermin cembung, sumber cahaya sebagai objek. Pemeriksa mengatur focus agar memperoleh jarak dari kornea.

Pemeriksa menentukan ukuran bayangan yang direfleksi dengan mengatur sudut prisma agar menghasilkan dua bayangan. Posisi prisma setelah diatur akan dikaliberasi dengan daya focus kornea ( dalam dioptri). Nilai rata-rata 44 dioptri dengan rata-rata radius kelengkungan kornea 7,7 mm. penderita dengan astigmastisma , biasanya dalam pengukuran bayangan dibuat arah vertical dan horizontal.

4)      Tonometer

Pada tahun 1900, Schiotz (Jerman) memperkenalkan alat untuk mengukur tekanan intraocular yang dikenal dengan nama Tono meter dari Schiotz.
Teknik dasar :

Penderita ditelentangkan dengan mata menatap ke atas, kemudian kornea mata dibius. Tengah-tengah alat ( Plug) diletakkan di atas kornea menyebabkan suatu tekanan ringan terhadap kornea. Plug dari tonometer berhubungan dengan skala sehingga dapat terbaca nilai skala tersebut. Tonometer dilengkapi dengan alat pemberat 5 5, 7 5 1 0, 0 dan 15,0 gram. Apabila pada pengukur tekanan intraocular dimana menggunakan alat pemberat 5, 5 g maka berat total tonometer:

= Berat plug + alat pemberat

= 11 gram + 5,5 gram

= 16,5 gram.

16,5 gram ini menunjukkan tekanan intraokuler sebesar 17 mm Hg. Pemeriksaan tekanan di dalam bola mata (intraokuli) untuk mengetahui apakah penderita menderita glaucoma atau tidak. Pada penderita glaucoma tekanan intraokuli mencapai 80 mmHg. Dalam keadaan normal tekanan intraokuli berkisar antara 20 – 25 mmHg dengan rata-rata produksi dan pengeluaran cairan humor aqueous 5 ml/hari.
Tahun 1950 Tonometer Schiotz dimadifikasi dengan kemudahan dalam pembacaan secara elektronik dan dapat direkam di sebut tonograf. Goldmann (1955) mengembangkan tonometer yang disebut tono meter Goldmann Aplanation ; pengukuran dengan memakai alat ini penderita dalam posisi duduk.

 5)      Pupilometer Dari Eindhoven

Diameter pupil dapat diukur dengan menggunakan pupilometer dari eindhoven. Yaitu lempengan kertas terdiri dari sejumlah lubang kecil dengan jarak tertentu. Apabila melihat melalui lubang-lubang ini dengan latar belakang dan tanpa akomodasi maka diperoleh perjalanan sinar sebagai berikut :

-          Lingkaran yang terproyeksi pada jaringan retina saling menyentuh berarti garis 1 dan 2 adalah sejajar. Garis 1 dan 2 inilah garis terluar yang masih dapat masuk melalui pupil, sehingga deperoleh jarak d, jarak ini adalah diameter pupil. Pada penentuan besar pupil, jarak antara lubang dan mata tidak menjadi masalah.

6)      Lensometer

Suatu alat yang dipakai untuk emngukur kekuatan lensa baik dipakai si penderita atau sekedar untuk mengetahui dioptri lensa tersebut. Prinsip dasar : Menentukan focus lensa positif sangat mudah , dapat dengan cara :

-           Memfokuskan bayangan dari suatu objek tak terhingga misalnya (matahari)

-           Memfokuskan bayangan dari suatu objek yang telah diketahui jaraknya.

Teknik di atas ini tidak dapat diterapkan pada lensa negatif namun dapat dilakukan sedikit modifikasi yaitu : mengkombinasikan lensa negatif dengan lensa positif kuat yang telah ditentukan dioptrinya, dengan demikian dapat ditulis rumus sebagai berikut :

Dengan memakai lensometer, benda penyinaran digerakkan sehingga diperoleh bayangan tajam melalui pengamatan lensa.

REFERENSI:

Hani, Ahmadi Ruslan, S.Pd, dan Riwidikdo, Handoko, S.Kp. 2008. Fisika Kesehatan. Jogjakarta:  Mitra Cebdikia Press.

J.F. Gabriel,2003, Fisika Kedokteran, EGC, Jakarta

http://arwinlim.blogspot.com/2007/10/bio-optik-dalam-keperawatan.html

http://pendidikansains.blogspot.com/2008/04/bio-optik-dalam-keperawatan.html

http://dasatisnaasyari.blogspot.com/2011/05/fisika-bahasan-bio-optik.html

 

About these ads
  1. musdalifah
    21 Desember 2011 pukul 03:37

    makasih blog anda sangat membantu saya hari ini, dan kedepannya,……………

  2. Seven STAR
    8 Juni 2012 pukul 13:17

    HEBAT…………………<>>

  3. 14 Mei 2013 pukul 09:47

    Hey there! I know this is kind of off topic but I was wondering which blog platform are you using for this site?
    I’m getting fed up of WordPress because I’ve had problems with
    hackers and I’m looking at options for another platform. I would be awesome if you could point me in the direction of a good platform.

  1. No trackbacks yet.

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Logout / Ubah )

Twitter picture

You are commenting using your Twitter account. Logout / Ubah )

Facebook photo

You are commenting using your Facebook account. Logout / Ubah )

Google+ photo

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

Ikuti

Get every new post delivered to your Inbox.

Bergabunglah dengan 1.639 pengikut lainnya.

%d bloggers like this: